Bergman Approximations of Harmonic Maps into the Space of Kähler Metrics on Toric Varieties
نویسنده
چکیده
We generalize the results of Song-Zelditch on geodesics in spaces of Kähler metrics on toric varieties to harmonic maps of any compact Riemannian manifold with boundary into the space of Kähler metrics on a toric variety. We show that the harmonic map equation can always be solved and that such maps may be approximated in the C topology by harmonic maps into the spaces of Bergman metrics. In particular, WZW maps, or equivalently solutions of a homogeneous Monge-Ampère equation on the product of the manifold with a Riemann surface with S boundary admit such approximations. We also show that the Eells-Sampson flow on the space of Kähler potentials is transformed to the usual heat flow on the space of symplectic potentials under the Legendre transform.
منابع مشابه
Bergman Metrics and Geodesics in the Space of Kähler Metrics on Toric Varieties
Geodesics on the infinite dimensional symmetric space H of Kähler metrics in a fixed Kähler class on a projective Kähler manifold X are solutions of a homogeneous complex Monge-Ampère equation in X×A, where A ⊂ C is an annulus. They are analogues of 1PS (one-parameter subgroups) on symmetric spaces GC/G. Donaldson, Arezzo-Tian and Phong-Sturm raised the question whether Monge-Ampère geodesics c...
متن کاملSzasz Analytic Functions and Noncompact Kähler Toric Manifolds
We show that the classical Szasz analytic function SN (f)(x) is related to the Bergman kernel for the Bargmann-Fock space. Then we generalize this relation to any noncompact toric Kähler manifold, defining the generalized Szasz analytic function ShN (f)(x). Then we will prove the complete asymptotic expansion of ShN (f)(x) and its scaling limit property. As examples, we will compute the general...
متن کاملConvergence of Bergman geodesics on CP1
This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full infinite dimensional symmetric s...
متن کاملSzasz Analytic Functions and Noncompact Toric Varieties
We relate the classical approximations SN (f)(x) of O.Szasz to the Bergman kernel of the Bargmann-Fock space H(C, e |z| 2 dm(z)). This relation is the analogue for compact toric varieties of the relation between Bernstein polynomials and Bergman kernels on compact toric Kähler varieties of S. Zelditch. The relation is then used to generalize the Szasz analytic functions to any infinite volume t...
متن کاملConvergence of Bergman Geodesics on Cp 1 1
This article is concerned with geodesics in spaces of Hermitian metrics of positive curvature on an ample line bundle L → X over a Kähler manifold. Stimulated by a recent article of Phong-Sturm [PS], we study the convergence as N → ∞ of geodesics on the finite dimensional symmetric spaces HN of Bergman metrics of ‘height N ’ to Monge-Ampére geodesics on the full infinite dimensional symmetric s...
متن کامل